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Neurons responding to different whiskers are spatially intermixed
in the superficial layer 2/3 (L2/3) of the rodent barrel cortex, where
a single whisker deflection activates a sparse, distributed neuronal
population that spans multiple cortical columns. How the super-
ficial layer of the rodent barrel cortex is organized to support such
distributed sensory representations is not clear. In a computer
model, we tested the hypothesis that sensory representations in
L2/3 of the rodent barrel cortex are formed by activity propaga-
tion horizontally within L2/3 from a site of initial activation. The
model explained the observed properties of L2/3 neurons, in-
cluding the low average response probability in the majority of
responding L2/3 neurons, and the existence of a small subset of
reliably responding L2/3 neurons. Sparsely propagating traveling
waves similar to those observed in L2/3 of the rodent barrel cortex
occurred in the model only when a subnetwork of strongly
connected neurons was immersed in a much larger network of
weakly connected neurons.

traveling wave | sensory cortex | cortical organization | small-world
network | space–time population code

Linking cortical functions to the underlying cortical organiza-
tion is one of the most important problems in neuroscience.

Cortical layer 2/3 (L2/3) serves as an important output layer
during the hierarchical processing of sensory information within
the sensory cortices, and thus, understanding L2/3 organization is
critical for understanding computation in canonical cortical cir-
cuits (1).
In contrast to sensory cortices of larger animals (carnivores

and primates), where neurons in the superficial cortical layer 2/3
(L2/3) tuned for different sensory stimuli are spatially organized
in cortical maps (2), L2/3 in the rodent sensory cortices lacks
crystalline maps with strong local tuning heterogeneity. Instead,
calcium imaging studies in rats and mice show that in L2/3 of
primary sensory cortices (visual, auditory, and somatosensory)
neurons tuned for different stimuli are spatially intermixed and
result in a salt-and-pepper organization (3–6). In the somato-
sensory (barrel) cortex of the rodents, this heterogeneity was
observed by stimulating a single whisker, which evoked spikes in
distributed neuronal population that spanned multiple whisker-
related anatomical columns (7–11) (Fig. 1 A and B).
The neural response properties in L2/3 of the rodent barrel

cortex also differ significantly compared with neural responses in
sensory cortices of larger animals. In larger animals, L2/3 neu-
rons respond reliably to sensory stimuli (2), whereas in the ro-
dent barrel cortex, deflection of the principal (preferred) whisker
evokes low-probability spiking responses in the majority of
responding L2/3 neurons, yielding mean overall firing rate
of <0.1 Hz (12–16). However, a small fraction of L2/3 neurons
(∼10%) have higher whisker-evoked response probability,
resulting in a skewed distribution of response probabilities across
L2/3 neurons (17, 18).
Here we explain how the superficial layer 2/3 of the rodent

barrel cortex could be organized to account for these observations.

Hypothesis
In a computer model of L2/3 of the rodent barrel cortex, we
attempt to explain cortical organization and neural response
properties in L2/3 by combining two observations: (i) propaga-
tion of activity in the rodent barrel cortex in response to whisker
stimulation (8–10) and (ii) lognormal distributions of synaptic
weights observed in many cortical areas (19).
Stimulus-evoked propagation of activity has been observed in

the rodent barrel cortex in response to whisker stimulation using
voltage-sensitive dyes (Fig. 1D) (8, 9), but the cortical circuits
that support the activity propagation have not been previously
explored. There is evidence that the activity propagation in the
rodent barrel cortex could be supported by strong horizontal
connections (20) [although intracolumnar interactions across
layers may also contribute to the activity propagation (21)]. We
will show that the observed salt-and-pepper tuning, low average
responsiveness, and the existence of a population of more re-
liably responding L2/3 neurons in the rodent barrel cortex can all
be explained by activity propagation within L2/3.
There is converging evidence for nonrandom organization of

the synaptic connections in the brain networks (22). In contrast
to random networks, where synaptic weights follow a Poisson
distribution (19), in brain networks the distribution of synaptic
weights follows a lognormal distribution, indicating that most of
the connections are short and weak, but there exist a few
stronger and longer synaptic connections. In the rodent visual
and somatosensory cortex, neurons with stronger synapses are
preferentially connected with each other (23–25). Thus, effec-
tively cortical network structure in the rodent barrel cortex could
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be viewed as a network in which a subset of strongly connected
neurons immersed in a network of weakly connected neurons.

Model
To examine the consequences of this hypothesis we developed a
neural network model that included essential features of the L2/
3 circuits in barrel cortex (26–28). Although the model was an
extreme simplification of S1 cortex anatomy, it highlighted im-
portant circuit mechanisms underlying cortical responses to
sensory stimuli.
The model consisted of 10,000 excitatory and 2,500 inhibitory

spiking neurons arranged in a 2D network. The excitatory neu-
rons were modeled after pyramidal neurons (29), and the in-
hibitory neurons were modeled after fast-spiking PV interneurons
(30–32).
In the rodent barrel cortex, 10% of L2/3 neurons respond with

much higher probability than the rest of L2/3 neurons (17, 18).
We assume that the experimentally observed L2/3 neurons re-
spond with much higher probability than other responding L2/
3 neurons because these neurons are preferentially connected
with each other via stronger connections. Thus, in the model, we
assume that 10% of the excitatory in L2/3 neurons connected via
stronger connections than the rest of L2/3 neurons. These

strongly connected neurons are immersed in a network of weakly
connected neurons (Fig. 2A). These model assumptions resulted
in a skewed distribution of synaptic weights (Fig. 2B), similar to
the distributions of synaptic weights observed in many cortical
areas (19).

Results
A Subnetwork of Strongly Connected Neurons Supports Activity
Propagation in L2/3. We stimulated a small population of ran-
domly selected neurons in the center of L2/3 network, which
mimicked inputs from layer 4 neurons. We wanted to reproduce
the observed propagation of activity in response to the deflection
of a single whisker (Fig. 1D) (6–11). We assumed that 10% of
excitatory L2/3 neurons were connected via stronger synapses,
and these strong connections are critical to support the activity
propagation within L2/3. However, it was not clear how many
strong connections are needed in the network to support such
activity propagation. Thus, the only parameter we varied in the
model was the number of strong connections among randomly
selected 10% of excitatory L2/3 neurons.
We increased the number of the strong connections until we

observed propagation of spiking activity in the network (Figs. 2C
and 3 A and B). This occurred in the model when we randomly
connected 1,000 excitatory neurons with 500 strong connections.
This result was theoretically predicted in a seminal paper on
random networks (33), where it was shown that there is a critical
number of connections among units of a random network, when
a subnetwork of interconnected units reaches the size of the
whole network. In theory, this condition emerges when the
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Fig. 1. Sensory representation in rodent somatosensory cortex. (A) Schematic
illustration of the rodent whisker pads and the correspondingwhisker pads in the
input layer 4 of the rodent barrel cortex; reprinted with permission from ref. 9,
permission conveyed through Copyright Clearance Center, Inc. (B) Illustrations of
distributed sensory representation in layer L2/3. Stimulation of a whisker marked
by yellow in A results in localized activity in the input layer 4 and distributed
activity in the superficial layer 2/3. (C) A 2D neural network model of the su-
perficial layer 2/3. The input from cortical layer 4 was implemented by injecting
currents directly into L2/3 neurons. (D) Experimental demonstration of activity
propagation in L2/3 of the rodent barrel cortex in response to whisker stimula-
tion; reprinted with permission from ref. 9, permission conveyed through Copy-
right Clearance Center, Inc. The activity was assessed using voltage-sensitive dyes,
which primarily reported subthreshold changes of the membrane voltages.
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Fig. 2. Neural network model of the rodent barrel cortex. (A) A strongly
connected subnetwork of L2/3 that constituted 10% of the excitatory neu-
rons (red circles). (B) Distribution of synaptic strengths of the excitatory
neurons. The majority of L2/3 neurons had weak short-range synapses, and
only a few were connected via strong long-range synapses. This skewed the
distribution of synaptic connections. (C) Model simulation. Stimulus-evoked
activity failed to propagate through the network. One hundred stronger
synapses were distributed among randomly selected 1,000 excitatory L2/
3 neurons. (D) Model simulation. The same network as in C with a higher
density of strong connections among the excitatory neurons. Stimulus-
evoked activity propagated through the network, but the activity continued
long after the stimulation was terminated. Nine hundred stronger synapses
were distributed among randomly selected 1,000 excitatory L2/3 neurons.

5278 | www.pnas.org/cgi/doi/10.1073/pnas.1710202115 Moldakarimov et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
7,

 2
02

1 

www.pnas.org/cgi/doi/10.1073/pnas.1710202115


www.manaraa.com

number of connections is half of the number of units in the
network (33). In our model, this happened when we randomly
selected 1,000 neurons and connected them with 500 strong
connections.
When we increased the number of the strong connections

beyond this threshold, the evoked activity not only propagated
through the network but was present in the network long after
the activity reached the boundaries of the network (Fig. 2D).
This result indicated that the strong connections also supported
the sustained reverberating activity, when the density of the
strong connections was too high. When the density of the strong
connections was at the predicted threshold, the activity propa-
gated in the network and terminated when the activity reached
the boundaries of the network (Fig. 3 A and B).

Sparseness of Propagated Activity in L2/3 Network. The propagated
activity in L2/3 was spatially sparse: although the propagated
activity reached the boundaries of the network, most of L2/
3 excitatory neurons did not spike in response to stimulation
(Fig. 3C). Because the propagating activity in L2/3 did not cause
spiking in every neuron at the wavefront, and the density of
the strong connections determined the propagation of activity, it
is likely that the activity traveled mostly over the strong
connections.

The evoked activity in L2/3 was also temporally sparse: the
responding L2/3 neurons only fired one or two spikes (Fig. 3D).
This included both the neurons responding with higher proba-
bility and the low-probability responding neurons. The temporal
sparseness of neural responses in L2/3 was due to the short
stimulation of L2/3 neurons by L4 neurons (due to feedforward
inhibition that followed feedforward excitation) and the short
wavefront within L2/3. This modeling result is consistent with the
previous observation that even the most reliably responding
neurons in L2/3 of the rodent barrel cortex produce no more
than a few spikes (34).

Propagation of Subthreshold Activity. We also reproduced the
previously observed results obtained using voltage-sensitive dyes,
which we suggest mainly reflect subthreshold activity (8, 9). In
the model, although the propagated activity resulted in sparse
spiking activity (Fig. 3 A and B), the subthreshold activity was
dense (Fig. 3 E and F); in the majority of L2/3 neurons, mem-
brane potentials increased as the activity propagated through the
network. In the model, this was because the strongly responding
neurons activated adjacent neurons via weak synapses, and most
of the latter neurons could not reach the spiking threshold.
Our observation is consistent with other experimental findings
that show virtually all L2/3 pyramidal neurons exhibit reliable
subthreshold postsynaptic potential in response to each whis-
ker deflection, although few neurons spike on any individual
trial (35).
It has been observed that L2/3 neurons that have the highest

spike probability to whisker deflection are those with the highest
E–I ratio (35). Thus, we suggest that inhibition can effectively
control the spiking threshold in the excitatory neurons, which
may result in sparse spiking activity under a wide range of
stimuli.

Response Probabilities of L2/3 Neurons. In experimental results,
deflection of the principal (preferred) whisker in rats evokes
weak, low-probability spiking responses in the majority of
responding L2/3 neurons, yielding mean overall firing rate
of <0.1 Hz (12, 16). However, a small fraction of L2/3 neurons
(∼10%) have higher whisker-evoked response probability,
resulting in a skewed distribution of response probabilities across
L2/3 neurons (17, 18, 23–25, 34). These neural response prop-
erties in L2/3 also originate in the structure of the L2/3 network
in our model.
In the model, we observed a skewed distribution of response

probabilities in L2/3 neurons (Fig. 4A), which resulted from the
skewed distribution of synaptic weights: the neurons with
stronger synapses responded with a higher probability compared
with other weakly connected L2/3 neurons. When we repeatedly
presented the same stimulus, we observed different spatial pat-
terns of spiking activity (Fig. 4B) because the low-probability
spiking neurons participated in a small fraction of these activ-
ity patterns. Two patterns marked by black and gray dots rep-
resent two populations of L2/3 neurons responding with low
probabilities on two separate trials. In these low-probability
spiking L2/3 neurons, the neural activity in response to a stim-
ulation was comparable with spontaneous activity (Fig. 4 C and
D, blue vs. black bars), which resulted in probabilistic responses
in these neurons.
In contrast, the highly active neurons responded to almost

every application of the stimulus (Fig. 4B). The red dots repre-
sented L2/3 neurons that responded with a high probability to
repeated presentation of the same stimulus.

Spike–Time Variation in L2/3 Neurons.We also observed differences
in trial-to-trial variation of spike times between the low- and
high-probability responding L2/3 neurons (Fig. 4 D and F). In the
low-probability spiking neurons, we observed a higher spike–time
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Fig. 3. Activity propagation in the neural network model. (A and B) Activity
patterns at two time intervals in a network with 500 stronger synapses
distributed among randomly selected 1,000 excitatory L2/3 neurons. In
contrast to Fig. 2D, the propagated activity was sparser and terminated
when the activity reached the boundaries of the network. (C) The total
number of responding L2/3 neurons as a function of time. (D) Spike histo-
gram of L2/3 neurons after a single stimulus presentation. (E) Membrane
potentials of L2/3 neurons after 2 ms. A few L2/3 spiked at the center of the
network. (F) Membrane potentials of L2/3 neurons after 5 ms. The wave of
depolarization of the membrane voltage could be observed, but the ma-
jority of L2/3 neurons did not spike. The propagation of activity reflected the
subthreshold membrane voltage.
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variability (Fig. 4D) because spontaneous activity in the network
made synaptic inputs noisy and significantly contributed to the
observed trial-to-trial variation of spike times (Fig. 4D, blue vs.
black bars). In the highly responsive neurons, spike times also
varied for repeated presentation of a stimulus but less so than for
the low-probabilistically responding neurons (Fig. 4F, blue vs.
black bars). Stronger excitatory synaptic inputs reduced the ef-
fect of the input noise on spike initiation in these neurons, and a
higher ratio of stimulus-evoked spikes to spontaneous spikes
further reduced the observed spike–time variability. Thus, we
predict that the strongly connected L2/3 neurons must show
lower trial-to-trial variations of spike times than other probabi-
listically responding L2/3 neurons. It is consistent with finding in
the rodent visual cortex, where strongly connected neurons spike
more reliably in response to stimulation (25).

Discussion
The sensory representation and neural response properties in
L2/3 of the rodent barrel cortex differ significantly compared
with neural responses in sensory cortices of larger animals (2–7).
In a computer model of L2/3 of the rodent barrel cortex, we

explained cortical organization and neural response properties in
L2/3 by combining two observations: (i) propagation of activity in
the rodent barrel cortex in response to whisker stimulation (8, 9)
and (ii) lognormal distributions of synaptic weights observed in
many brain areas (19).
We showed in the model that stimulus-evoked activity prop-

agation in the barrel cortex could be supported by intracolumnar
and cross-columnar horizontal connections (20), but intra-
columnar interactions across layers may also contribute to the
activity propagation (21). Based on our simulations we predict
that connections among strongly responding layer 2/3 excitatory
neurons could be on average stronger and longer than in other
weakly responding L2/3 neurons.
Our model exhibited a few previously observed neuronal

properties in L2/3 in the rodent barrel cortex: the low response
probability in the majority of L2/3 neurons and the existence of a
small subset of the highly responsive L2/3 neurons. Our model
predicts the significant differences in spike precision among the
low- and high-probability responding L2/3 neurons. Taking into
account that the strongly responding L2/3 neurons are sparsely
distributed (23), we further predict that there might be a coun-
terintuitive positive correlation between the strengths of con-
nections and the distance between these strongly responding L2/
3 neurons.
Despite the sparse pattern of spiking in the network of weakly

connected neurons, there was a high degree of correlation in
their subthreshold membrane potentials, which could modulate
the effect of other inputs. This could be explored by stimulating
two or more whiskers in temporal sequences and observing the
effect of the first whisker deflection on the responses of neurons
to the second whisker deflection. During behavior, interactions
between multiple whisker deflections could be much more
complex.

Neural Code. The distributed sensory encoding formed by trav-
eling waves is neither a rate code, because each neuron fires only
a few spikes sporadically, nor a spike timing code, because of the
great variability of first spike latency in a majority of the neurons.
In such a space–time code, information is distributed in both
spatial patterns and temporal spike patterns. What computations
can be done with sparsely interacting traveling waves? For in-
spiration, in a recent study of the dynamics of a silicone droplet
bouncing on a vibrating oil bath, the droplet created a set of
waves, like the waves in barrel cortex evoked by a whisker de-
flection (36). The entire history of the droplet’s path can be
predicted from the observed spatial pattern at a single point in
time. In a similar fashion, a neural wave traveling over the barrel
cortex could encode both stimulus position and its recent history
in a distributed spatiotemporal pattern of activation. The avail-
ability of information about the recent past could be useful in
processing dynamic sensory patterns, which presents difficulties
for static feedforward processing.

Salt-and-Pepper Sensory Tuning. Our model was developed to
address experimental data obtained by stimulating a single
whisker, in which one stimulus-specific subnetwork within L2/
3 could be activated (24). However, the model also suggests an
explanation for the emergence of the salt-and-pepper somato-
topy in L2/3 (6–10). There is evidence that independent sub-
networks of functionally distinct neural populations may coexist
within single cortical columns (3, 37). Thus, we predict that in the
rodent sensory cortices the salt-and-pepper somatotopy could be
formed by overlapping subnetworks formed by specific sets of
strongly connected L2/3 neurons, where each subnetwork tuned
for a specific whisker covers many columns within the barrel
cortex. Interactions among distinct but overlapping subnetworks
may explain the broader receptive fields in the high-probability
responding neurons (38).
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Fig. 4. Response properties of L2/3 neurons in the model. (A) The distri-
bution of response probabilities in L2/3 neurons. (B) Activity patterns in the
network of two presentations of a stimulus. The black and gray dots rep-
resent two populations of the low-probability responding L2/3 neurons
showing that a different subset responded on the two trials. The red dots
represent the high-probability responding neurons, which responded on
most trials. (C) Spike histogram and (D) spike–time distribution in one of the
low-probability responding L2/3 neurons. Neural activity in response to
stimulation is shown by blue bars, and spontaneous activity is shown by
black bars. (E) Spike histogram and (F) spike–time distribution in one of the
high-probability responding neurons. Neural activity in response to stimu-
lation is shown by blue bars, and spontaneous activity is shown by black bars.
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Network Architecture. Our main results do not depend on a par-
ticular architecture of the network; many other networks may
support activity propagation that may result in sparse spiking
activity. We discuss a few possible network architectures that
may support such sparse spiking activity.
The small-world architecture of neural systems has been

reported in many studies on large-scale anatomy of mammalian
cortex (39–41), for anatomical/functional small-world within
cortical layers (42), and even on the cellular level (43). In our
model, we assumed that there are two classes of connections,
which resemble a small-world network; however, we have not
tested if our network fits the definition of a classical small-
world network.
A scale-free architecture for the subnetwork of strongly con-

nected neurons could also support traveling waves (44). The
subnetwork developed following the scale-free algorithm would
result in a tree-like network, which can support activity propaga-
tion initiated at the center of the network without reverberating
waves.
In their seminal paper on random networks (33), Erdos and

Reniy showed that there is a critical number of connections
among units of a random network, when one cluster of inter-
connected units becomes much larger than other clusters, and
this largest cluster covers the entire network. This condition is
called percolation threshold. Erdos and Reniy predicted that this
threshold emerges when the number of connections is a half of
the number of units in the network. Note that this is highly sparse
connectivity because each of these connected neurons has on
average less than one strong connection.
Erdos–Reniy theory also suggests an explanation on why we

did not observe sustained activity at the percolation threshold.
The theory predicts that probability of finding closed loops of
connections in a random network is low at the percolation
threshold. This suggests that in the model the strongly connected
neurons form effectively a tree-like structure; therefore, the ac-
tivity can propagate in this network without reverberating waves
of activity.
Random networks at the percolation threshold could form

fractals (45, 46). A critical advantage of fractal networks is that
the fractal networks can cover larger areas with fewer connec-
tions. Taking into account that L2/3 may consist of many over-
lapping subnetworks, fractal networks may satisfy the requirement
of the economy of cortical wiring (47). In contrast to regular
objects, fractals have fractional dimensionalities. In a regular
network, the density of strongly connected neurons should in-
crease linearly with the area of observation. In a fractal network,
the density should have a scaling exponent (typically less than
one) with the area of measurement. Assuming that the strongly
connected neurons are the neurons with stronger connections,
the nonlinear dependences shown in Fig. 5 may indicate that the

subnetwork of strongly connected neurons is fractal. However,
the data may also indicate that the density of the evoked activity
is unevenly distributed and may be higher in the center of the
network due to the direct stimulation.
To further explore the circuit organization in L2/3 and dis-

tinguish between different network architectures (random, frac-
tal, scale free, and small-world) it may be fruitful to ask the
following questions: How do these L2/3 networks develop? Is it a
random process that takes place simultaneously in many loca-
tions as in Erdos–Reniy model? Does the network start in a
particular location and gradually add connections as in the scale-
free networks? Are there two types of connections, local and
global, as in the small-world networks? These and other ques-
tions could be explored in future studies.

Materials and Methods
See SI Materials and Methods for more details.

We developed a spiking neuron network model of L2/3 circuits of the
rodent barrel cortex. Although the model is an extreme simplification of the
rodent cortex anatomy, it highlights important circuit mechanisms un-
derlying cortical responses to sensory stimuli (26–28). Because we developed
a conceptual model and did not include many observed details of the barrel
cortex, such as diversity of neuron types, the density of synaptic connections,
etc., the model parameters may not be close the observed experimental
values. We wanted to keep the model as simple as possible to make quali-
tative predictions of the cortex’s behavior; we did not aim to make detailed
quantitative predictions.

Network Architecture. To activate such a large population of layer 2/3 neu-
rons, layer 4 neurons may diffusely project to layer 2/3. However, studies of
layer 4 to layer 2/3 connectivity indicate that L4 axons project to the area in L2/
3 just above the corresponding L4 barreloid (48). This suggests that whisker
stimulations activate, via canonical thalamus → L4 → L2/3 excitatory circuits,
a small population of L2/3 neurons located above the corresponding
L4 column, and thus, population neural activity in L2/3 that spreads to many
cortical columns must be evoked by horizontal connections. In the model, a
small population of L2/3 neurons is located at the center of the network.
These L2/3 neurons in turn activate other L2/3 neurons via horizontal con-
nections, and the evoked activity propagates horizontally within L2/3 from
the site of the initial activation. We did not model L4 neurons explicitly and
instead injected currents directly into L2/3 neurons.

The model consisted of 10,000 excitatory and 2,500 inhibitory neurons,
which were arranged in a 2D network, 100 by 100 neurons for the excitatory
neurons and 50 by 50 for the inhibitory neurons.

The short-range connections were randomly assigned from a distance-
dependent distribution (see SI Materials and Methods for more details).
This procedure resulted in neighboring neurons having higher chances to be
connected than distant neurons. The recurrent excitatory–excitatory con-
nections were in the range observed among adjacent pyramidal neurons in
L2/3 layer (26–28) and were randomly assigned for each pair of neurons with
probability of 0.1. Recurrent connections between excitatory and inhibitory
neurons were randomly connected with the peak probability 0.5.

The sparseness of the stimulus-evoked activity in L2/3 was critical to explain
the observed neural response properties in L2/3. It was possible to observe
traveling waves in a network consisting solely of the weak recurrent con-
nections. However, the activation pattern in such network would not be
sparse: the traveling waves would activate almost all neurons at the wave-
front. In themodel, the activated patterns were spatially sparse onlywhenwe
added a few strong connections. In the model, out of 10,000 excitatory L2/
3 neurons we randomly selected 1,000 neurons. Out of these 1,000 neurons,
we randomly selected pairs of neurons and connected them with stronger
synapses. We repeated this process until we reached the percolation
threshold ∼500 strong connections.

NeuronModel. The excitatory neurons weremodeled after pyramidal neurons
(29). The inhibitory neurons were modeled after fast-spiking PV interneu-
rons (30) and provided both feedforward and recurrent inhibition into L2/
3 excitatory neurons (49).

Both the excitatory and inhibitory neurons were simulated using integrate
and fire neuron model (50) with different sets of parameters. When voltage
of a neuron reached a threshold, the voltage was assigned a reset value −5.
This value was selected to implicitly introduce refractory period; thus, it took
a few milliseconds for a neuron to recover after spiking. The threshold for
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Fig. 5. Distribution of strongly responding neurons. (A) Number of strongly
responding neurons as function of size of area over which the neurons were
counted. Red circles are high-probability responding neurons, and black
circles are low-probability responding neurons. (B) Density of neurons as
function of size of area over which the neurons were counted.
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each excitatory neuron was randomly selected from uniform distribution in
a range from 0.5 to 2. Initial values for voltages were also randomly selected
from a uniform distribution between 0 and 1.

For the excitatory neurons, after a neuron spiked, its voltage was changed
to a reset value −5. This reset value was selected to implicitly introduce a
refractory period; in the simulations, it took a few milliseconds for a neuron
to recover after spiking. We did not model the refractory period in the
inhibitory neurons.

Stimuli. In the model, we did not include the input layer 4 into the model but
applied input currents directly into L2/3 neurons.We briefly activated a subset
of L2/3 neurons located in the center of the network, corresponding to one
cortical column. The stimuli lasted 2 ms. The short stimulation was due to
feedforward inhibition that is prominent in L4–L2/3 projections and sup-
presses later spikes (31, 32). The directly activated L2/3 neurons then

activated other L2/3 neurons via horizontal connections within the L2/
3 network.

We stimulated a small population of randomly selected neurons in the
center of L2/3 network, which mimicked inputs from layer 4 neurons. Stimuli
were applied to randomly selected excitatory and inhibitory neurons in a
square consisting of neurons 45 to 55 in both directions. The strengths of the
input currents were randomly selected from a uniform distribution between
0 and 1.
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